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Fig. 1. Our method receives an input video of a person wearing glasses, and consistently removes the glasses, while preserving the original content and
identity of that person. Our method successfully removes the glasses even when there are reflections (bottom-middle example), heavy makeup (top-right), and
eye blinks (bottom-right). Red rectangles are zoomed-in at the bottom row.

Diffusion-based generative models have recently shown remarkable image
and video editing capabilities. However, local video editing, particularly re-
moval of small attributes like glasses, remains a challenge. Existing methods
either alter the videos excessively, generate unrealistic artifacts, or fail to
perform the requested edit consistently throughout the video.
In this work, we focus on consistent and identity-preserving removal of
glasses in videos, using it as a case study for consistent local attribute re-
moval in videos. Due to the lack of paired data, we adopt a weakly supervised
approach and generate synthetic imperfect data, using an adjusted pretrained
diffusion model. We show that despite data imperfection, by learning from
our generated data and leveraging the prior of pretrained diffusion models,
our model is able to perform the desired edit consistently while preserving
the original video content. Furthermore, we exemplify the generalization
ability of our method to other local video editing tasks by applying it suc-
cessfully to facial sticker-removal. Our approach demonstrates significant
improvement over existing methods, showcasing the potential of leveraging
synthetic data and strong video priors for local video editing tasks.

1 INTRODUCTION
Recent advances in diffusion-based generative models [Ho et al.
2020; Sohl-Dickstein et al. 2015] have demonstrated impressive ca-
pabilities in image and video editing [Bar-Tal et al. 2024; Geyer et al.
2023; Kara et al. 2023; Rombach et al. 2022; Yang et al. 2023; Zhang
et al. 2023a,b]. While local editing, such as removing and adding at-
tributes without changing the rest of the content, mainly works for
images, local video editing remains a challenge. Video frames often
contain motion blur and challenging poses that are less common in
images. Moreover, videos of people pose additional challenges, as

humans are highly sensitive to subtle unrealistic “uncanny” artifacts,
and our visual system is more sensitive to motion inconsistencies,
so the quality bar is higher. Existing image editing and inpainting
methods [Brooks et al. 2023; Couairon et al. 2023; Meng et al. 2021;
Nitzan et al. 2024; Tsaban and Passos 2023; Zhang et al. 2023a] are
trained on clean images, that do not contain the aforementioned
problems, and therefore do not perform well over video frames;
They typically either change the original frames too much, or do
not perform the requested change completely, as illustrated in Fig. 2.

Video inpainting methods [Li et al. 2022b; Yu et al. 2023a; Zhang
et al. 2022; Zhou et al. 2023] typically remove objects by deleting
and filling regions of the video, often disregarding the information
originally present in those regions. When it comes to generating
new video content behind an object that never moves, these meth-
ods tend to generate a low detailed background, or one with clear
unrealistic artifacts. As a representing use-case, we choose to tackle
glasses removal, as it is a particularly challenging example; where
some content is never or only partially revealed (e.g. eyes, eyebrows),
and is changed across the video (e.g. eyelids change position across
frames). Since eyes contribute greatly to identity perception, a con-
sistent and highly realistic generation is required for an identity to
be preserved. However, current video inpainting works typically
generate smooth results when using small masks, that do not fit the
facial case well (see ProPainter [Zhou et al. 2023] and FGT [Zhang
et al. 2022] results in Fig. 5).
Mask-free video editing methods [Cong et al. 2024; Geyer et al.

2023; Kara et al. 2023; Khachatryan et al. 2023; Zhang et al. 2023b]
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mainly focus on changing the style of the whole video, or changing
the appearance of large parts of it, and not on local changes that
should adhere to the original context. Other works [Bar-Tal et al.
2022; Kasten et al. 2021] learn an atlas for each new video, leading
to long inference time. Furthermore, as mentioned in Text2Live
[Bar-Tal et al. 2022], the goal of these works is to manipulate the
appearance of existing objects, not to change the composition of
the elements in the scene. Hence, their method is not capable of
successfully removing attributes such as glasses from faces.

In this work, we focus on removing glasses from videos as a case
study for local video editing. We introduce a new method that per-
forms this task consistently while preserving the original identity.
To the best of our knowledge, no paired data exists for this task;
Therefore, we cannot finetune a model directly to solve it. To tackle
this problem, we generate imperfect synthetic data, and use it to
train a model in a weakly supervised manner. We show that by using
an adjusted pretrained image inpainting model, we can generate
imperfect data pairs, and learn from them. Our method is closest to
video inpainting, in the sense that it removes something from the
video and replaces it with different content. However, similarly to
recent video editing works, the input to our model is a mask-free
image, allowing the model to use facial details that are occluded
for inpainting models. As glasses often contain colored lens and
reflections that change across frames, which affect the way the eye
behind them looks, they are a challenging attribute to remove from
faces. Hence, we incorporate cross-frame attention layers in our data
generation model, which allows aggregating information from dif-
ferent frames. Still, as presented in Fig. 2, the generated data (‘Synth
data’) is imperfect and contains many artifacts, such as not always
preserving the eyelid position and other features from the original
frame. To overcome these challenges, we finetune a diffusion based
image-to-image model over this data. This way we can leverage the
prior of the pretrained model, while enhancing its capabilities with
our new data. Additionally, the non-masked input allows the model
to exploit the fact that it is exposed to useful information within the
masked region to achieve the requested edit, while preserving the
rest of the content from the original frames. Despite the imperfec-
tions in our synthetic data, a model with a strong prior can leverage
its prior knowledge to outperform the training data and produce
high-quality results. Finally, to get temporally consistent results,
we combine our trained model with a motion prior, and achieve
state-of-the-art results on video glasses-removal, surpassing all cur-
rent video editing and inpainting methods. To demonstrate that our
method can be generalized to other local video editing tasks, we
successfully apply it to the task of removing stickers from faces. We
release code and both the stickers and the glasses removal datasets
for further research.

2 RELATED WORK

2.1 Image editing
Since the advent of diffusion models for image generation and edit-
ing [Ho et al. 2020], real image editing has rapidly advanced and
showed remarkable results [Brooks et al. 2023; Couairon et al. 2023;
Hertz et al. 2022; Meng et al. 2021; Tsaban and Passos 2023; Tu-
manyan et al. 2023; Zhang et al. 2023a], including local editing such

Input LEDITS IP2P Lyu et al. SD inpaint CN inpaint Synth data Ours

Fig. 2. Glasses-removal from a blinking eye by image editingmethods
Left to right: LEDITS [2023], Instruct pix2pix [2023], Lyu et al. [2022], Stable
Diffusion inpaint [2022], ControlNet inpaint [2023a], our synthetic dataset
generation result, and our final result. As image editing methods expect high
quality images with people looking straight to the camera, they struggle
when these constraints are not met. In our dataset result ‘Synth data’, as a
result of the cross-frame attention, eye artifacts appear. However, our model
is still able to learn from the imperfect data and remove the glasses better
than any out-of-the-box method, and better than the data it was trained on.

as removing glasses from images. Moreover, image inpainting meth-
ods [Nitzan et al. 2024; Rombach et al. 2022; Yildirim et al. 2023;
Zhang et al. 2023a], have also shown impressive results, realistically
replacing the content behind a given mask. Additionally, prior work
[Lee and Lai 2020; Lyu et al. 2022] tried to tackle the task of remov-
ing glasses from images directly. Indeed, these works perform well
over images. However, as shown in Fig. 2 they fail when applied to
video frames of people, that do not always look directly at the cam-
era, and constantly move, causing motion blur and other artifacts.
Moreover, when applied frame-by-frame, the generated content
differs between frames, resulting in temporal inconsistencies.

2.2 Video editing
Recently, video editing has also developed greatly with video-to-
video translation methods [Cong et al. 2024; Geyer et al. 2023; Kara
et al. 2023; Khachatryan et al. 2023; Qi et al. 2023; Wu et al. 2023;
Zhang et al. 2023b] that focus on transforming the entire frame into
a different style, while trying to preserve temporal consistency in
the generated videos. Some of them, such as RAVE [Kara et al. 2023],
or TokenFlow [Geyer et al. 2023] with SDEdit [Meng et al. 2021]
also perform local editing. However, in the case of glasses-removal,
where a person moves across the video and the requested edit is
small and delicate, many artifacts such as face deformations and in-
consistencies are generated. Examples are presented in Fig. 5 and in
video results in the supplementary material. Another line of works
is atlas-based video editing [Bar-Tal et al. 2022; Kasten et al. 2021; Lu
et al. 2021; Suhail et al. 2023]. These methods learn an atlas for each
video, to apply changes to either the background or foreground of
the video. The initial atlas reconstruction requires excessive com-
putational resources and long running times. Moreover, as these
methods were designed to change the appearance of existing objects,
they are not meant for adding or removing attributes that were not
part of the original video, such as glasses, and do not perform these
changes well. Additionally, while theoretically allowing to remove
layers from a video, these methods are limited to relatively simple
motion and to static backgrounds.

2.3 Video inpainting
Video inpainting is the task of consistently filling-in new content be-
hind a given mask throughout a video [Gu et al. 2023; Li et al. 2022b;
Yu et al. 2023a; Zhang et al. 2022; Zhou et al. 2023]. Such methods



V-LASIK • 3

Input Masked input w/o CF attn w/ CF attn Input Masked input w/o CF attn w/ CF attn

input inaccurate mask glasses remnants no remnants input masked input reflections no reflections

Fig. 3. Cross-frame attention importance in data generation. Cross-
frame attention helps removing glasses remnants, even when the mask is
not perfect (left example) and reducing glasses reflections (right example).

work well when the object moves throughout the video, and the
model is able to fill-in the background from other video frames,
where the background is visible. However, they struggle with filling-
in completely occluded areas, especially when they are part of the
foreground, such as faces. Particularly, areas behind glasses are only
partially revealed by head motion, and sometimes glasses cause
optical deformations that hide the background. Slight changes to
face features in the “background” of glasses may yield unrealistic
results, or alter the face identity, as shown in the ProPainter [Zhou
et al. 2023] and FGT [Zhang et al. 2022] results in Fig. 5. While such
changes to smooth backgrounds may not significantly affect the per-
ceptual quality of the results, in foreground areas and particularly
in faces they are detrimental.

2.4 Learning from synthesized data
Deep learning models require large amount of data to learn from,
however paired data is not always available for the task at hand.
Hence, several works [Brooks et al. 2023; Li et al. 2022a; Lyu et al.
2022; Peebles et al. 2022; Ravuri and Vinyals 2019] use generative
models for data generation to train models. These works usually
rely on the high quality of the generated data, and learn solely from
it. In this work, we accept that generated data is usually imperfect,
and is insufficient to achieve the required result on its own, thus
we take advantage of the strong priors of pretrained models and
use our generated data for fine-tuning. This way, the model learns
to generate results that are superior to the data it was trained on,
while performing the relevant task.

Lyu et al. [Lyu et al. 2022] specifically explores synthetic data
for the task of glasses-removal from images. However, their data
acquisition process requires face scanning and 3D data, which is
hard to acquire, unlike our method which does not require any
special equipment or effort.

3 METHOD
Given an input video of a person wearing glasses, our goal is to
remove the glasses while preserving all other information. As il-
lustrated in Fig. 4, our approach to removing glasses from videos
consists of three stages: data generation, training, and editing. First,
as no paired data is available for this task, we generate a synthetic
paired dataset using videos of people wearing glasses. Next, we fine-
tune an image-to-image diffusion model over our synthetic dataset,
to get realistic video frames without glasses, where all other parts
of the frame remain similar to the original frame, and the iden-
tity of the edited person is preserved. Finally, we incorporate our

trained model with a pretrained motion module, into a video editing
pipeline, to obtain temporally consistent videos without glasses.

3.1 Paired Data Generation
As illustrated in Fig. 2, current image editing and inpaintingmethods
do not perform well on the task of removing glasses from video
frames. Therefore, wewish to train amodel for this task. However, to
the best of our knowledge, no relevant paired dataset currently exists.
Hence, we create a synthetic dataset of paired video frames, with
and without glasses, using videos from the CelebV-Text dataset [Yu
et al. 2023b] where people wear glasses. For each video frame, we
generate a glasses mask using a face parser [Zheng et al. 2022] that
identifies the glasses in it. The eyes are a key component in the
identity of a person, and the current position of the eyelids is crucial
to generating a result that is consistent with the original video, that
might contain eye-closure and blinking. Therefore, we want to give
the model information about the eyes and eyelids, to keep their
original appearance. To do that, we make eye “holes” in the glasses
masks, using the identified eye landmarks. Then, we inpaint the
glasses area by applying an adjusted inpainting diffusion model over
each video frame and its generated mask.
We make two adjustments to the inpainting model: First, to

achieve smoother and more realistic transitions between the frame
and the inpainted part, we blend the latent feature vectors with a
noised encoded version of the masked original frame at each diffu-
sion step, as suggested in Blended Latent Diffusion [Avrahami et al.
2023]. Second, to increase the edit consistency across frames from
the same video, we replace the self-attention layers of the model
with a cross-frame attention [Khachatryan et al. 2023]. For each
video frame, we perform a cross-frame attention with 𝑘 reference
frames from the same video. We use multiple reference frames as
sometimes information such as the eyebrows or the eye color is
hidden behind the glasses or their reflections. Using cross-frame
attention with multiple frames allows for generalization from all 𝑘
frames. For this purpose, we adopt the cross-frame attention mech-
anism suggested by TokenFlow [Geyer et al. 2023]:

softmax(𝑄 · [𝐾0, ..., 𝐾𝑘 ]𝑇√
𝑑

) · [𝑉1, ...,𝑉𝑘 ] (1)

where each query frame (𝑄) attends to 𝑘 different values (𝑉𝑖 ), cor-
responding to 𝑘 different reference frames in our case. As a result,
even when face parts are occluded, the information about the oc-
cluded parts can be retrieved from the reference frames if they are
revealed there. An example of occluding reflections is presented on
the right side of Fig. 3. In this example, there are reflections over
the glasses, hiding the true eye colors behind them. Without using
cross-frame attention, reflections and artifacts are present on the
output result. However, when using cross-frame attention, the true
eye color is preserved and no reflections are shown in the result.
Moreover, using cross-frame attention also helps when the masks
are not exact and do not cover all of the glasses in all video frames,
as in the left example of Fig. 3. In this case, glasses remnants appear
when no cross-frame attention is used, due to an incomplete mask.
However, they are removed when we use cross-frame attention,
where the masks of the reference frames cover the uncovered part.
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Fig. 4. Method overview: Step 1: we create an imperfect synthetic paired dataset by generating glasses masks for each video frame and inpainting it. We
inpaint each frame using an adjusted version ControlNet inpaint [Zhang et al. 2023a]. We replace the self-attention layers with cross-frame attention (cf attn)
and use blending between the generated latent images and the noised masked original latent images at each diffusion step. The generated data in the first
step is imperfect; e.g. in the middle frame, the person blinks, however its generated pair has open eyes. Nevertheless, the data is good enough for finetuning
an image-to-image diffusion model and achieving satisfactory results, due to the strong prior of the model. Step 2: Given our trained model for the task of
removing glasses from images, we incorporate it with a motion prior module to generate temporally consistent videos without glasses from previously unseen
videos. To obtain the original frame colors, at each diffusion step we blend the generated frames with the noised original masked latent images, and before
decoding, we apply an Inside-Out Normalization (ION), to better align the statistics within the masked area and the area outside of the mask.

3.2 Model fine tuning
After the data generation stage, we obtain pairs of frames with and
without glasses. However, our generated frames are not temporally
consistent, and also contain per-frame artifacts in many cases, as
featured in Figs. 2 and 4. For example, the eyelid positions, i.e. closed
or open, sometimes change after the inpainting process. Despite that,
the generated data is good enough for finetuning a pretrained image-
to-image diffusion model for the task of removing glasses from faces.
These models have strong prior for generating realistic looking
images that are similar to the original ones and preserve their small
and delicate details. Therefore, after finetuning, the model learns
the task of removing glasses from our data, while preserving fine
details such as eye color and eyelid positions.

3.3 Video editing pipeline
To consistently remove glasses from unseen videos, we integrate our
trained model with a pretrained motion module [Guo et al. 2024].
When applied directly to video frames, this model’s results often
exhibit slightly different colors from the original input. To overcome
this issue, we can use the masks from the data generation stage to

retrieve the original values on areas that are outside of the mask. For
a smooth result, at each diffusion step we perform a gradual blending
between the noised masked input and the generated result, such
that the area within the mask changes completely, and the areas that
surround the mask change less, gradually decreasing the amount
of change as the pixels are further from the mask. Additionally,
inspired by AdaIN [Huang and Belongie 2017], we apply a new
normalization function, we dub Inside-Out Normalization (ION),
where we aim to align the statistics of the masked area with those of
the non-masked area. Formally, we calculate the mean and standard
deviation of the masked area and the non-masked area, 𝜇𝑚, 𝜎𝑚
and 𝜇�̄�, 𝜎�̄� respectively, and we normalize the values of the latent
features in the area inside the mask by calculating:

𝐼𝑂𝑁 (𝑥) = 𝜎�̄�
𝑥 − 𝜇𝑚
𝜎𝑚

+ 𝜇�̄� (2)

ION allows a smooth transition between the areas inside and
outside of the mask by moving the statistics of the latent masked
area toward those of the non-masked area.
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4 IMPLEMENTATION DETAILS
Data generation& training specifics. For the glassesmasks gener-
ation, we use Facer [Zheng et al. 2022]with retinaface/mobilenet
as a face detector, farl/celebm/448 as a face parser, and farl/-
ibug300w/448 as a face aligner. We first find the glasses mask using
the parser, and then make eye holes in it based on the eye landmarks
found by the face aligner. To generate the holes, for each eye, we
connect the eye landmarks into one connected component, dilate
it with a (10,10) kernel, so that we keep enough of the eyes infor-
mation, and remove the component from the mask. Additionally,
after resizing the mask to match the size of the latent vectors, we
dilate the mask with a kernel of (3,3), and then blur it with a (3,3)
kernel as well, to make sure we include all glasses pixels, and not
too much from the rest of the image. For the inpainting process,
we use CN inpaint [Zhang et al. 2023a] as our model, with latent
blending with a blending ratio of 0.9. We use 2 reference frames for
the cross-frame attention: the first and middle frames in each video,
since usually the person moves and changes position throughout
the video so more information is gathered this way. If more memory
is available, more reference frames will probably give better results.
Moreover, for consistency we also use the same noise (encoding of
the first reference frame) for all the video. We use CN Tile [Zhang
et al. 2023a] as the model we finetune over our dataset, with batch
size 8, learning rate 1e−5. To avoid learning the artifacts of our
imperfect data, and avoid forgetting the prior knowledge of CN Tile,
we stop the training at an early stage, as suggested by DVP [Lei
et al. 2020].

Editing pipeline specifics. We use the pretrained motion mod-
ule of AnimateDiff [Guo et al. 2024] with context length 16, context
overlap 4 as our motion prior module. As shown in the right exam-
ple of Fig. 9, the motion module tends to smooth the frames to get
a more temporally consistent result, hence sometimes the results
using this module get blurry. To avoid blurriness, we use only some
of the motion layers and not all of them. Specifically, we remove
the first 5 output motion layers. This way, we get a more realistic
and less blurry video. For blending we use gradual values between
0 and 0.7 as mask values, so that pixels outside of the mask can also
change a little bit for a smoother result.
Original colors vs. glasses removal trade-off. As an option

in our video editing pipeline, we blend original pixels back into
areas outside the masked region. If we do not blend them back, the
colors in the edited video may not match those of the original video
exactly. However, as the masks are not perfect, glasses remnants
are sometimes left within the non-masked region, causing glasses
remnants to appear in the result when using masks. To avoid it,
we use dilation and different blending values outside of the mask.
If the original colors are not as important and glasses-removal is
of higher priority, one can use higher dilation for the mask, lower
mask blending values, or even not use the masks at all.
General. We use Stable Diffusion 1.5 [?] as our backbone in

all the method steps, as at the time of development there was no
compatible motion module for SDXL.

5 EXPERIMENTS
We evaluate our results both qualitatively and quantitatively, testing
three aspects:
1. Fidelity to the required edit, i.e glasses-removal.
2. Identity and content preservation of the original video. We
want to remove the glasses while leaving the rest of the video intact.
3. Realism of the result, by means of temporal consistency and
realism per-frame.
As we perform local video editing, we compare our results with

the results of the SOTA video editing methods: TokenFlow [Geyer
et al. 2023], RAVE [Kara et al. 2023], and Text2Video-Zero [Khacha-
tryan et al. 2023]. TokenFlow and Text2Video-Zero incorporate
SDEdit [Meng et al. 2021] and instructPix2Pix [Brooks et al. 2023],
respectively, to allow for local attribute editing, and RAVE uses CN
“depth-zoe” [Zhang et al. 2023a] for that purpose. We also compare
our model to the SOTA video inpainting works ProPainter [Zhou
et al. 2023] and FGT [Zhang et al. 2022] as our work is similar to
inpainting works in the sense that it tries to replace some part of
the video. Additionally, we compare our results to the results of our
video editing pipeline with CN inpaint [Zhang et al. 2023a] instead
of our trained model, to emphasize that existing image inpainting
models do not perform well enough on this task, even when com-
bined in our video editing pipeline. Our quantitative and qualitative
evaluations, including a comprehensive user study, demonstrate
that our results are favored over all other methods across all tested
aspects.

5.1 Experimental details
We generate our data pairs as described in Sec. 3.1 from the dataset
CelebV-Text [Yu et al. 2023b]. We train our model over 1296 of those
videos, and test over 144 unseen videos.

5.2 Qualitative evaluation
Visual results of our method are presented in Figs. 5 and 6 and in
the supplementary material. As illustrated in the figures, existing
video editing and inpainting methods struggle with performing the
required local edit, i.e., removing the glasses of the person. Moreover,
evenwhen they do remove the glasses, they tend to generate artifacts
and unrealistic results, leave glasses remnants, or do not preserve
the identity of the person or its original eyelid positions. In contrast,
our method successfully removes the glasses while preserving the
identity and content of the original video.
We perform a thorough user study to compare our results with

the results of TokenFlow, RAVE, ProPainter, and our editing pipeline
with CN inpaint. In the user study, we do not compare our results
to those of Text2Video-Zero, as it only removes the glasses from the
input video in 4% of the test videos, as featured in Fig. 5.

The user study tests three aspects: glasses-removal, resemblance
to the identity in the original video, and realism of the result. For
each video in the survey, we ask the users in which videos are the
glasses removed. If both models removed the glasses for that video,
we additionally ask which video contains less remnants of glasses,
which one looks more realistic, and which one better preserves the
identity of the person in the original video. We ask for remnants of
glasses, because we noted that even when other models remove the
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Fig. 5. Visual comparisons: We compare our results to different video editing and inpainting methods. Other methods often struggle with glasses-removal,
and even when they do remove the glasses, they tend to leave glasses remnants (e.g. RAVE right example), generate artifacts (e.g. FGT, ProPainter examples,
TokenFlow left example), do not preserve the identity of the person (e.g. RAVE Left example), or their eyelids position (e.g. RAVE both examples).
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Fig. 6. Visual comparison: We compare our results to different video editing and inpainting methods. Other methods often struggle with glasses-removal,
and even when they do remove the glasses, they tend to either change the identity completely (e.g. TokenFlow right example), generate artifacts such as black
areas around the eyes (e.g. FGT, ProPainter both examples), or do not preserve the eyelids position (e.g. TokenFlow, RAVE right example)

.
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RAVE
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TokenFlow
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Fig. 7. User study results: First, we ask users which models remove the
glasses from the input video (top). Then, when both models remove the
glasses, we ask which one better preserves the identity of the person, which
one is more realistic, and which result has less remnants of glasses (bottom).
Compared to all model examined, the users preferred our results through
all measured aspects.

glasses from the video, they often leave parts of the glasses or their
reflections, e.g. as presented in the results of RAVE in Fig. 5. The user
study contained side-by-side video pairs of our results vs. the results
of different models for the same input (11 per model, 44 pairs in
total), and it was answered by 57 users. The results of our user study
are presented in Fig. 7. The top table shows the percentage of videos
for which the users thought each model removed the glasses from
the input video. The users thought our model removed the glasses
in 98.9% of the cases, more than any other model. The bottom table
shows the percentage of users that preferred our results over the
tested models. Fig. 7 shows that the users preferred our results over
all other models, in all the measured aspects: identity preservation,
realism, and quality of glasses-removal.

Table 1. Quantitative results:We compare our results to different video
inpainting and editing methods, where CN inpaint∗ is CN inpaint embedded
in our video editing pipeline instead of our model. We present results for
two versions of our model — with and without masks, as elaborated in
Sec. 5.3. We test the fidelity of the results by checking Δ𝐺 , the average
difference between glasses pixels in the original video frames and the edited
one.We test the identity preservation of the edited video using 𝐼𝐷 score, and
the tradeoff between them using 𝐼𝐷 · Δ𝐺 . Moreover, we test the temporal
consistency of the generated videos using the optical flowwarp error 𝐸𝑤𝑎𝑟𝑝 .

Method Δ𝐺 (×.01) ↑ 𝐼𝐷 (×.1) ↑ 𝐼𝐷 · Δ𝐺 (×.01) ↑ 𝐸𝑤𝑎𝑟𝑝 (×10−4 ) ↓

ProPainter [2023] 4.0 7.5 3.0 3.9
FGT [2022] 4.0 7.1 2.8 4.0
CN inpaint∗ [2023a] 3.0 8.0 2.3 4.1
TokenFlow[2023] 2.0 6.9 1.4 5.7
RAVE [2023] 2.0 7.4 1.5 6.8
T2V-Zero [2023] 0.3 9.0 0.3 8.1
V-LASIK (ours) 4.0 7.6 3.0 3.6
V-LASIK masked (ours) 4.0 7.6 3.0 4.2

5.3 Quantitative evaluation
We compare the results of different video editing and inpainting
methods to the results of our model in two versions — with and
without masks. As mentioned in Sec. 4 both options exist for our
model and there is a tradeoff between them. The masked version
better preserves the original video colors, while the non-masked
version better removes the glasses and thus is more temporally
consistent. These differences are small, hence as shown in Tab. 1,
they only slightly affect the quantitative results.

Fidelity: to test the fidelity of our results, we measure the average
difference between the number of pixels with glasses in the original
videos vs. the edited ones. To find the pixels that contain glasses
in an image, we use a face parser [Zheng et al. 2022] that detects
glasses, and apply it to each video frame. Then, we calculate the
average difference between the number of pixels with glasses in the
original frame and the edited one, normalized by the total number
of pixels per frame, and report it as Δ𝐺 in Tab. 1. As the Δ𝐺 scores
in Tab. 1 show, our method removes the glasses better than all other
video editing methods, and is on-par with the inpainting methods
ProPainter [Zhou et al. 2023] and FGT [Zhang et al. 2022]. However,
as illustrated in Figs. 5 and 6 and by the results of our user study in
Fig. 7, although they remove the glasses from most videos, as our
method does, they often generate unrealistic results with artifacts
around the eyes, which our model does not generate.

Identity preservation: to test identity preservation, we use an ID
score (𝐼𝐷 in Tab. 1), which is defined by the average cosine similarity
between the face embeddings of the video frames, generated by the
face recognition model Arcface [Deng et al. 2019]. We note that
neither of these metrics is complete on its own, as an unchanged
video would get a perfect 𝐼𝐷 score, and a random video without
glasses would get a very high Δ𝐺 score. For example, as Text2Video-
Zero [Khachatryan et al. 2023] does not remove the glasses from
most videos, and does not change the videos by much, it achieves
a very high 𝐼𝐷 score. For this reason, we follow prior work [Kara
et al. 2023; ?] and also look at 𝐼𝐷 · Δ𝐺 , which quantifies the trade-
off between removing the glasses from the video, and remaining
faithful to the identity of the person in the original video. When
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looking at 𝐼𝐷 · Δ𝐺 , our model achieves the best results, together
with ProPainter [Zhou et al. 2023]. However, as mentioned, the
results of our user-study in Fig. 7 show that our model outperforms
ProPainter and all other methods both in terms of glasses-removal,
and in terms of realism and identity preservation.
Temporal consistency: to evaluate temporal consistency, we

follow previous work [Geyer et al. 2023; Lai et al. 2018; Lei et al. 2020;
Zhou et al. 2023] and calculate the warp error (𝐸𝑤𝑎𝑟𝑝 in Tab. 1). We
use RAFT [Teed and Deng 2020] to calculate optical flow between
each consecutive pair of frames, warp the former towards the latter,
and calculate a masked MSE loss (masking occlusions) between
the warped frame and the second frame. As shown in Tab. 1, the
non-masked version of our model produces the most temporally
consistent results, compared to all other methods.

5.4 Generalization
In this work, we focus on glasses as a case study. We chose glasses as
they are a particularly complex task, as explained in Sec. 1. However,
our method can be generalized to other types of local video editing.

In
pu

t
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lt

Fig. 8. Stickers results. These examples show the generalization ability of
our method. We apply it to removing facial stickers from videos, and show
our model successfully removes different stickers from different locations
over the face.

5.4.1 Stickers. To show our method works for a different use-case,
we generate a synthetic dataset of videos by applying stickers from
the Stickers dataset [Nguyen et al. 2021] on faces from the CelebV-
Text [Yu et al. 2023b] dataset, imitating real facial stickers, tattoos
or synthetic features added by social-media apps, and show that
our method is able to remove them. For this task, we detect the
face in each frame, and estimate its 3D shape using a trained neural
network that predicts the coefficients of the Basel 3D face model
[Gerig et al. 2018]. Then, we project and render the sticker texture
on the original frame. For each generated clip, we sample one sticker
and place it at a random position in the 𝑢𝑣 coordinate space, which
is mapped to the surface of the face. We generate 1274 clips this
way, each 40-frames long.

After the dataset is created, we train the same image-to-image
model over the stickers dataset and run our video editing pipeline
using this model over the test videos. Some results are presented in
Fig. 8. As shown, our model is able to seamlessly remove the stickers
from the videos.

6 LIMITATIONS
Although our method removes glasses reflections in many cases,
it struggles with strong reflections, as in the left example in Fig. 9,

Input Output Input Output No MM MM

Fig. 9. Limitations. Left: strong reflections. Middle: Dark sunglasses. In
these cases, as the eyes are not exposed, the model cannot guess the right
eye color. Moreover, our data was not clean and contained sunglasses videos
which were treated the same way as eye glasses in the data generation
process. Hence, the model generates dark areas instead of eyes for dark
sunglasses videos. Right: Eye blurriness that comes from the motion module.

where the true eyes are never visible. Additionally, our method
struggles with dark sunglasses, as in the middle example in Fig. 9,
where identifying eye color is difficult. Moreover, as current glasses
detectors do not differ between eye and sun glasses, our dataset
was not clean and contained sunglasses videos as well. As we used
the same kind of masks for all our data, if the input is a video with
sunglasses, our model often generates dark areas where the eyes
should be, as is shown the middle example in Fig. 9. This could
be solved by cleaning the data and only training over eye-glasses
videos. Finally, the motion module tends to smooth the frames to
get a more temporally consistent result. As a result, our outputs
also tend to be a bit blurry, as shown in the right example in Fig. 9.
As discussed in Sec. 4, by using only some of the motion layers, we
reduce the blurriness to a minimum.

7 SOCIETAL IMPACT
While the goal of this work is to allow editing of owned or licensed
videos only, we acknowledge the fact it may be misused to altering
videos without consent, and contribute to the spread of misinfor-
mation. We condemn such usage, and we are actively working on
systems that detect synthetic and edited media.

8 DISCUSSION
We explored the potential of local video editing through learn-
ing from imperfect synthetic data without paired data. Our results
surpass existing methods, consistently and realistically removing
glasses from videos while preserving the individual’s identity. We
focus on the challenging case of removing glasses from videos, how-
ever we show our method can also be applied to other local video
editing tasks such as removing stickers from faces. We hypothe-
size it would work similarly for any other local attribute, and we
encourage future work to pursue this direction.
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